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INVITED ARTICLE

Textured deformations in liquid crystal elastomers

J.S. Biggins*

Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK

(Received 12 February 2009; final form 9 March 2009)

Liquid crystal elastomers exhibit very rich elastic behaviour because they couple elastic fields and mobile liquid
crystal order. One striking phenomenon is the formation of textured deformations: a homogenous elastomer
sometimes responds to a macroscopically homogenous imposed strain by forming a spatially fine mixture of very
different deformations (a texture) that average to the imposed strain. This occurs because some large strains can be
accommodated by rotation of the liquid crystal order, so they cost little energy to impose, while other equally large
(or smaller) strains cannot and hence are energetically expensive. If one of these latter strains is imposed macro-
scopically, the elastomer’s energy is lowered if it can form a fine mixture of larger but lower energy strains that
average to the imposed deformation. Great progress has been made in understanding this behaviour over the last
10 years. Here, we review the key theoretical ideas and highlight several predicted textures which merit experi-
mental attention. This review assumes little prior knowledge of elasticity or liquid crystal elastomers so hopefully it
will be accessible to both non-elasticians and elasticians from other fields, notably the study of martensite which is a
highly analogous system but with small strains and discrete broken symmetries rather than large strains and
continuous broken symmetries.
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1. Introduction

Liquid crystal elastomers are rubber-like solids that

exhibit liquid crystal order. An elastomer (rubber) is a

cross-linked polymer melt, which is to say it is made of

long writhing entropically dominated polymer chains.

After cross-linking the chains continue to behave as

though they were still in a melt, but the presence of a

few links between them prevents macroscopic flow so
the material is a solid. The unwinding of these chains

allows rubber to suffer very large ( �100%) elastic

strains recoverably and at modest energetic cost.

A liquid crystal in contrast is a real fluid of rod-like

molecules but with the solid-like property that the rods

align, giving the fluid long-range orientational order.

If liquid crystal rods are embedded inside an elasto-

mer, either as constituents of the polymer chains or as
pendent-like side chains, they can exploit the locally

liquid-like nature of the elastomer network to align.

This results in a liquid crystal phase trapped inside a

solid rubber: a liquid crystal elastomer.

P.G. de Gennes’ influence suffuses the study of

liquid crystal elastomers. As well as significant contri-

butions to the study of both liquid crystals (1) and

polymers (2) he was also the first to think about com-
bining them in elastomers. He first considered conven-

tional elastomers cross-linked in the presence of liquid

crystal solvents (3) and then later considered the cou-

pling of nematic order and strain in cross-linked

nematic polymer networks (4). The textured deforma-

tions reviewed in this article are a consequence of this
coupling, so it is both fitting and a pleasure to dedicate

it to him.

The study of textured deformations in liquid crys-

tal elastomers was initiated by a beautifully simple

experiment by Kundler and Finkelmann (5). They

took a strip of nematic elastomer with a uniform

in-plane nematic director and stretched it along the

in-plane direction perpendicular to the original direc-
tor. Their strip of elastomer did several remarkable

things in response to being stretched. Before stretching

the elastomer was homogenous and had no light scat-

tering features so it was highly transparent, but on

stretching it became completely opaque and remained

opaque until some critical stretch �e � 2 was reached,

at which point the elastomer sharply became transpar-

ent again. Furthermore, the strains up to �e were
produced at very much lower stress than would have

been expected for an elastomer without liquid-

crystalline order, but the stresses required to produce

further extension were not. Using optical microscopy

and X-ray diffraction Kundler and Finkelmann were

able to show that, as the sample was stretched, the liquid

crystal director was rotating towards the stress direction.

The cloudy phase consisted of many micrometre-scale
stripes with alternating senses of director rotation as

shown in Figures 1 and 2. These stripes provided the
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heterogeneity to scatter light making the sample opaque,

but when director rotation was complete the nematic

director was again uniform so the sample returned to

being transparent. The same results have been repro-
duced in (6) for a chemically very different nematic

elastomer.

The surprising results of the Kundler and

Finkelmann experiment are well explained by a tex-

tured deformation (7). The essential idea is that when

the elastomer is stretched and the nematic director

rotates, the energy of the deformation is much reduced

if the elastomer also shears as shown in Figure 3.
By splitting into many fine stripes that alternate

between equal and opposite director rotation and

shear, the elastomer is able to build the imposed defor-

mation entirely out of low-energy sheared stripes: it

has formed a texture, Figure 4. This analysis, along

with a microscopic understanding of why the shear

reduces the energy, was made by Verwey, Warner

and Terentjev (7) (see also (8)). Since these early
experiments a great deal of progress has been made

in the theoretical description of these textured defor-

mations, in particular by Conti, DeSimone, Dolzmann

and Adams (9–12), and there are now several interest-

ing textures which have been proposed theoretically

but not yet observed. One of the key theoretical

achievements is the discovery of the fully relaxed free

energy for ideal nematic elastomers (9) as a function of

imposed macroscopic deformation, that is, the energy

after the adoption of the most favourable texture for

the imposed deformation. In this review we outline the

key theoretical ideas that underpin this progress and

then review some of the interesting proposed textures

and experimental geometries in which they might be
observed. We illustrate the theoretical ideas using the

example of ideal nematic elastomers to in effect

re-prove the relaxation result in (9). We hope that the

additional explanation in this review will make this

proof more accessible to non-mathematicians.

The subjects of textured deformations and liquid

crystal elastomers are covered in two excellent books

(13) and (14). The former is a general text on all aspects
of the physics of liquid crystal elastomers, while the

latter is a study of textured deformations in a different

system, solids showing martensitic transitions.

2. Basic elasticity

To study elasticity problems we must first consider a

body in a reference configuration to deform.

We define the region of space occupied by the body

Figure 1. A strip of nematic elastomer with an initially
homogenous in-plane director is stretched perpendicular to
the director. It is first observed to form a cloudy phase
consisting of stripes in which the director has rotated equal
amounts but in opposite senses, then at some critical stretch
rotation is completed and the elastomer becomes
transparent again.

Figure 2. A view of the cloudy stripe phase through crossed-
polars, the stripes of alternating director rotation are clearly
visible. The length scale of the stripes is of the order of 10�m
(image by I. Kundler and H. Finkelmann).

Figure 3. Left: A strip of relaxed nematic elastomer. Middle:
Stretching the strip affinely perpendicular to its director is a
high-energy deformation. Right: If the strip is allowed to
shear as well as stretch the energy of the deformation is much
reduced and the director rotates through the sample. The
amount of shear required is zero at both the beginning and
end of director rotation but finite at intermediate stages.

Figure 4. The energetic cost of a stretch perpendicular to the
director is reduced by building the deformation out of stripes
of low-energy sheared deformations: a texture. If the width
of the stripes is very small the macroscopic deformation
appears to be pure stretch.
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in the reference configuration as W and label all of the

points in the body by their position vectors x. Any

deformation of the body can be described by a vector

function x¢ðxÞ that gives the new position vector of

each point in the body. We can now characterise the

local distortion of the body caused by the deformation

by imagining embedding a small vector R between two

points in the reference state and calculating what
it becomes in the deformed state. If the vector

spans between x1 and x2 in the reference state

(R ¼ x1 � x2) then in the deformed state it will be

R¢ ¼ x¢ðx1Þ � x¢ðx2Þ. Taylor expanding x¢ about

x¢ðx1Þ and keeping only the first-order term (because

x2 is near x1) we see that R¢ ¼ ðdx¢=dxÞR. We define

this important first derivative that characterises the

local distortion of the body as the deformation gradi-
ent FðxÞ ¼ dx¢=dx. A deformation is called homoge-

nous if F is constant throughout the body. In this case

there are no higher-order terms in the Taylor expan-

sion of x¢ðxÞ so any vector R embedded between two

points in the reference configuration will become F � R
in the deformed configuration. The transformation

rule for vector areas is also important and is given by

A¢ ¼ ðcof FÞA, where A is the vector normal to a sur-
face and with magnitude equal to the area of the sur-

face. Since deformations in elastomers are always at

constant volume (meaning det F ¼ 1; see the end of

the section), this is the same as A¢ ¼ F�TA where the

inverse transpose is represented by –T.

The deformation gradient tensors for homogenous

deformation are the same as the transformation

matrices met in elementary mathematics: if the defor-
mation was a rotation it is a rotation matrix, if it was a

shear it is a shear matrix, etc. If a second deformation

is applied to the deformed state the total deformation

gradient is simply the matrix product of the two sepa-

rate deformations. Elasticity in elastomers often

involves very large deformations so, unlike in many

other systems, these matrix products cannot be

expanded and linearised about the identity matrix.
We can gain great insight into the nature of homo-

genous deformations by applying the polar decompo-

sition theorem to the second rank tensor F. This tells

us that we can always write F ¼ R � S where R is a

rotation matrix, and S is a symmetric matrix and,

hence, in some frame diagonal. This means that any

deformation can be thought of as a simple stretch,

with three orthogonal principal axes, followed by a
body rotation. Since only the former involves any

distortion of the body, the amount of distortion is

completely described by the three (positive) eigenva-

lues of S, f1 � f2 � f3, which are called the principal

values of the deformation F. The volume of the

deformed body is simply the volume of the body in

the reference state multiplied by det F ¼ f1f2f3, which

can easily be visualised by imagining a unit cube in the

reference state whose edges align with the principal

axes of S: after deformation the cube will be a cuboid

with edges of length f1, f2 and f3 so its total volume has

increased by a factor of det F.

3. Formulating texture problems

When a deformation is applied to a body we actually

specify the configuration of the surface of the body,
while the interior can relax to whatever configuration

(consistent with the imposed surface configuration) has

the lowest energy. Our intuition suggests that, if we

have deformed the boundary homogeneously, we

expect the interior to also undergo the same homoge-

nous deformation. However, in textured deformations

this is not the case. In these cases the energy of the

interior is minimised by the body adopting a fine
mixture of different deformations that are consistent

with the deformed boundary. Our approach to under-

standing this type of problem is therefore one of energy

minimisation. We expect textures to occur if they are

energetically favoured. If we know the material’s energy

function, WðFÞ, which tells us the energy cost of impos-

ing a homogenous deformation gradient F, then we

wish to study the problem

W rðFÞ ¼ min
x¢¼Fx on �

1

Vol:�

Z
Wð�x¢ðxÞÞdx: ð1Þ

By this definition, the relaxed energy function W rðFÞ is
the average energy per unit volume of the body after

the deformation gradient F has been imposed on the

boundary of the body and the body has adopted the

most favourable (in general non-homogenous/

textured) deformation x¢ðxÞ consistent with the

imposed deformation of the boundary. A function is

called quasiconvex if the formation of textured defor-

mations does not lower the energy any further. By
definition, relaxed energy functions are quasiconvex.

Although the above definition of W rðFÞ appears to be

dependent on the shape of the body, W, in fact it is not.

Some fairly simple rescaling arguments can be used to

show that if W relaxes to W r in W it has the same

relaxation for any shape of body (14).

4. Models of liquid crystal elastomers

The above formulation of textures as a consequence of
energy minimisation makes it clear that textures must

be a consequence of unusual forms for WðFÞ. For a

conventional elastomer (an ideal Gaussian rubber) the

energy density after imposing a homogenous deforma-

tion gradient F is, in suitable units (set so

Liquid Crystals 1141
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1
2
�; 1

2
kbTn ¼ 1 where n is the number density of cross-

links),

WðFÞ ¼
Tr ðF � FTÞ ¼ f 2

1 þ f 2
2 þ f 2

3 if detF ¼ 1;

1 otherwise:

8<
:

ð2Þ

The extreme energy penalty for det F�1 requires that

all deformations take place at constant volume. This is

a very good approximation for all elastomers since their

bulk modulus is several magnitudes larger than their

shear modulus, in future expressions it will be assumed
that det F ¼ 1 so the penalty case will be omitted. This

simple expression has several noteworthy features. It is

only a function of the principal values of F so it is

isotropic: it only depends on the magnitudes of the

three principal stretches, not what direction they are

applied in. It also has a global minimum at

f1 ¼ f2 ¼ f3 ¼ 1, so the elastomer is relaxed in the refer-

ence configuration. Finally, the energy penalty for
stretching is quadratic in the three principal stretches,

even at very large strain. This final property is what

makes it a perfect rubber; in practice, real elastomers

deviate from this behaviour at very high strains.

A nematic elastomer in a high-temperature isotro-

pic state behaves in the same way as a conventional

elastomer. However, when it is cooled into the nematic

phase, all of the liquid crystal rods align in one direc-
tion (for monodomain samples; polydomains are not

discussed here) and the elastomer spontaneously elon-

gates in the alignment direction (15). The degree of

elongation depends on the exact nature of the elasto-

mer but can be up to several hundred percent. The

underlying physical mechanism is that the liquid crys-

tal rods bias the polymer strands’ conformation dis-

tributions along the nematic director. Ideally any
direction could have been chosen for the new nematic

director, so this extension could have appeared along

any direction and there is a large set of equivalent low-

energy states each with a different deformation with

respect to the isotropic state (Figure 5). The locally

liquid-like nature of elastomers means that the

nematic director can rotate through the elastomer, so

if a deformation is applied that deforms one low-
energy elongated state into another, the director can

rotate to the appropriate angle meaning the deforma-

tion has not cost any energy to impose. The idea of soft

elastic modes as a consequence of symmetry breaking

spontaneous distortions was first studied by

Golubovic and Lubensky (16).

We include spontaneous elongation in the energy

function of the elastomer by making a single simple
modification to the conventional elastomer energy,

writing

WðFÞ ¼
f 2
1 þ f 2

2 þ f 2
3 =r if det F ¼ 1;

1 otherwise;

8<
: ð3Þ

where r is a scalar constant of the material that is

greater than one in the nematic phase. This form of

the energy can be justified microscopically by consid-

ering Gaussian distributed polymers with second
moments biased by the nematic director (17). This

microscopic treatment actually yields a more general

energy function,

WðF ; nÞ ¼ Tr F � F T � � þ 1

r
� 1

� �
n # n

� �� �
; ð4Þ

where � is the identity matrix and n is the final state

nematic director. This form predicts the cost of inde-

pendently applying a deformation gradient F and

causing the nematic director to align along n, but for

elastic experiments the nematic director is not under

experimental control but rather is free to rotate to

whatever direction minimises the elastic energy, so

the observed energy function is

WðFÞ ¼ min
n̂

Tr F � FT � � þ 1

r
� 1

� �
n # n

� �� �
;

ð5Þ

which is minimised when n aligns with the axis of the
largest principal value of F returning equation (3).

In other contexts n can be manipulated, for example

by using electric fields (18) or light (19).

We can visualise the important difference between

the nematic and conventional elastomer energies by plot-

ting the energy cost of imposing a simple uniaxial stretch

(f1 ¼ f2 ¼ 1=
ffiffiffiffi
f3
p

) in different directions (Figure 6). If r is

a two-dimensional vector from the origin, these plots
display the cost of imposing a uniaxial stretch along r
with magnitude f3 ¼ jrj þ 1. The reference undeformed

state is at the origin (f3 ¼ f2 ¼ f1 ¼ 1). The function for a

Figure 5. Middle: A cube of liquid crystal rubber in the
high-temperature isotropic phase, the liquid crystal rods
are shown as black lines. Left and right: On cooling to the
nematic phase, the nematic order can form in any direction
and the sample spontaneously stretches in this direction.
There is a large set of equivalent relaxed states each with a
different deformation with respect to the isotropic reference
state.
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conventional elastomer is convex with a global minimum

at the undeformed state, but the function for a nematic
elastomer is not convex and has a degenerate set of

minima corresponding to relaxed states in a ring around

the origin, while the reference state is not a relaxed state.

In this work we use the high-temperature isotropic

state as the reference state from which deformations

are measured. The advantage of this approach, intro-

duced in (9) and familiar from the study or martensite,

is clear: from this isotropic reference state the energy
function (3) is isotropic, and therefore the energy

function of the relaxed elastomer will also be isotropic.

If the aligned nematic state is taken as the reference

state the function is no longer isotropic because it can

distinguish between stretches applied along and

perpendicular to the nematic order. The price paid

for this mathematical convenience is that the reference

state is not a relaxed state but a high-energy state: the
elastomer would like to stretch and form a nematic

phase. Since real samples are well-aligned nematic

monodomains the results must be translated into this

more physical reference configuration to discuss

experimental results. Historically much work has

been done using the aligned nematic state as the refer-

ence state (7, 8), and the appropriate energy function

for this case is (13)

WðF ¢Þ ¼ min
n̂

Tr F ¢ � ð� þ ðr� 1Þn0 # n0Þ � F ¢T�
�

� þ 1

r
� 1

� �
n # n

� ��
; ð6Þ

where n0 is the nematic director in the reference

nematic state, n is the final director and F¢ is now the

deformation gradient from the reference nematic

state. This form can be deduced from (5) by substitut-

ing F ¼ F¢ � F
s

where F
s

is a spontaneous deformation

that results in nematic order along n.

The formation of textured deformations is ulti-

mately driven by energy functions such as (3), func-

tions which assign little energetic cost to some large

distortions and much higher cost to some smaller dis-

tortions. In the field of liquid crystal elastomers the

large deformations at low energy are generated, as in

the nematic case, by the rotation of the liquid crystal
director through the elastomer causing a large change

to the polymer conformations, and hence the shape of

the sample, at modest energetic cost. The existence of

these low-energy modes, which correspond to deforma-

tions that take the sample around the well in Figure 6, is

well established. Two particularly compelling papers

are (8), a treatment of the Kundler and Finkelmann

experiment where both stripping and the exact nature
of director rotation as a function of stretch are

explained using soft elastic modes, and (18) where soft

modes are seen as a response to director rotation caused

by electric fields.

5. Geometric bound on the deformations made soft

by texture

Since the ideal nematic energy (3) has a large set of

relaxed states, there is scope for making states with
other deformations with respect to the reference state

relaxed if they can be made out of textures of relaxed

states. We can place a simple (although, as we show

later, in practice perfect) bound on the set of deforma-

tions that can be made relaxed through the formation

of texture.

Volume conservation requires that det F ¼ 1 ¼ f1f2f3
so we can substitute f2 ¼ 1=ðf1f3Þ into (3) giving

WðFÞ ¼ f 2
1 þ

1

f 2
1 f 2

3

þ f 2
3

r
: ð7Þ

Simple differentiation shows that this is minimised at
3r�1=3 by f3 ¼ r1=3, f1 ¼ f2 ¼ r�1=6, which correspond

to the ring of minima in Figure 6. This means that any

uniaxial stretch by a factor of r1=3 will turn the refer-

ence state into a low-energy relaxed state, irrespective

of the axis of the stretch. These are the spontaneous

distortions of the system that are seen on cooling an

isotropic sample to the nematic phase, seen, for exam-

ple, in (15) and first predicted in (20). If we define K0 as
the set of minimisers of (7), then we can write

K0 ¼ fF 2M3·3 : f1 ¼ f2 ¼ 1=r1=6; f3 ¼ r1=3g: ð8Þ

(This set notation will be familiar to mathematicians.

The curly brackets denote a set, P means ‘is a member

of’, ‘:’ means ‘such that’ and M3·3 is the set of 3 · 3

matrices, so this expression reads ‘the set of 3 · 3

–2
0

2

–2

0

2

0

0.8

W

–2

0

2

–2

0

2

0

10
W

Figure 6. Energetic cost of imposing a uniaxial stretch on a
conventional elastomer (left) and nematic elastomer (right)
in the reference state. The value of the function at r is the
cost of imposing a uniaxial stretch of magnitude jrj þ 1 in
the direction of r.
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matrices F such that the principal values of F are

f1 ¼ f2 ¼ 1=r1=6 and f3 ¼ r1=3’.) We can now put a

simple bound on the set Kqc, the total set of deforma-

tions that, for ideal nematic elastomers, can be made

relaxed by the formation of texture. If a texture is to be

relaxed it must be made entirely out of deformations

that are relaxed, i.e. members of K0. If F is a member
of Kqc, it is built out of members of K0, so it is clearly

impossible for the largest principle value of F to exceed

r1=3 as this would require F to be a larger deformation

than any of the deformations that make it up.

Similarly, the smallest principal value cannot be smal-

ler than r�1=6, so we can write

Kqc � fF 2M3·3 : r�1=6 � f1 � f2 � f3 � r1=3g; ð9Þ

where � denotes that Kqc is either a subset of or equal

to the set on the right. For example, in Figure 4, the

imposed stretch deformation is in Kqc because it can be

made out of a texture of two sheared deformations

that are in K0.

6. Continuity of textured deformations

To establish that a deformation F is actually in Kqc we

need to explicitly construct a texture of zero-energy
deformations that averages to F. To do this, it is not

enough to find a set of deformation gradients in K0

that average to F and then apply them to small regions

of the body in the appropriate volume fractions. This

is because two deformation gradients cannot in gen-

eral be applied in adjacent regions without the bound-

ary between the regions fracturing. For example, it is

impossible to rotate one part of a body and not an
adjacent part without the boundary between the two

ripping. Textured deformations require the deforma-

tion gradient to become a function of position in the

material, so different parts of the material deform

differently. However, when choosing spatially chan-

ging deformation gradients, we must remember that

FðxÞ ¼ dx¢=dx where x¢ðxÞ gives the position vectors

after deformation of points in the material originally
at x. If the body is not to fracture, then x¢ðxÞmust be a

smooth function which means that FðxÞ, as the gradi-

ent of a smooth function, must have zero curl.

The zero-curl condition is useful for situations

where FðxÞ is a smoothly varying function. However,

textured deformations are almost never smooth but

rather consist of many small regions each with a con-

stant deformation gradient, and therefore have sharp
changes in the gradient across the boundaries.

Applying the condition that FðxÞ has zero curl when

it is piecewise constant is difficult. A simpler approach

is to realise that two deformations, F
1

and F
2
, applied

on either side of a plane boundary will not cause the

material to rip provided that the boundary plane

deforms into the same plane under both deformations.

If m is the boundary normal in the reference state, this

requires that F
1
v ¼ F

2
v for every vector v perpendicu-

lar to m, meaning every v in the interfacial plane in the

reference state. This will be true if the deformation
gradients are rank-one connected, meaning

F
1
� F

2
¼ a # m ð10Þ

where a is any vector; we show below that a is actually

always a vector in the interfacial plane in the final

state. We can easily prove that this condition is suffi-
cient to guarantee the material does not rip by con-

tracting the equation with v giving

F
1
v� F

2
v ¼ 0; ð11Þ

which is precisely the condition required for continuity.

The condition of rank-one connectivity is equiva-
lent to requiring that vector areas in the interfacial

plane transform to the same vector areas under both

deformations (14),

F�T

1
m ¼ F�T

2
m ; m¢; ð12Þ

where we have defined m¢ as the final state boundary

normal. Contracting the rank-one connectivity condi-

tion from the left with m¢ ¼ F�T
1

m ¼ F�T
2

m we see that

0 ¼ ðm¢ � aÞ # m. This means that a is perpendicular

to the deformed state plane normal, m¢, and hence is a

vector in the interfacial plane in the deformed state.
The geometry of rank-one connected deformations is

shown in Figure 7.

Rather more insight into the nature of the rank-

one connectivity constraint is yielded by writing it as

F
1
¼ � þ a # m¢
� �

F
2
; ð13Þ

where � is the identity matrix and, since a and m¢ are

orthogonal, the tensor preceding F
2

on the right is a

Figure 7. A body split into two regions by a plane with
normal m undergoes different deformations F

1
and F

2
on

either side of the boundary. The two deformations are rank-
one connected (F

1
� F

2
¼ a # m) so they do not cause the

body to rip at the boundary.
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simple shear; see Figure 8. This means that the defor-

mation on one side of the boundary relative to the

other side of the boundary is just a simple shear across

the boundary. It is easy to see that a simple shear
across a boundary does not cause the material to

fracture, as shown in the stripes of opposite shear in

Figure 4.

The rank-one connectivity condition places a very

strong constraint on which deformation gradients

can be applied next to each other. Most pairs of

deformation gradients are not rank-one connected,

and even if two deformation gradients are rank-
one connected there will only be one plane (with

normal m in the reference state) across which they

can join. This rules out most more complicated

texture geometries such as those with curved

boundaries.

7. Laminate textures

There is a simple way for a material to form a fine

texture out of two deformation gradients that are

rank-one connected: it can form a laminate. All of

the planes that separate regions of different deforma-

tion must have the same layer normal (m in the refer-
ence configuration), and hence be parallel so by

splitting into a stack of layers separated by such

parallel planes the material can oscillate between the

two deformation gradients on a fine scale, achieving

their average macroscopically. The Kundler and

Finkelman stripe domain, Figures 4 and 2, is an

example of a laminate texture.

All of the textures that have been explicitly con-
sidered in the field of liquid crystal elastomers are

laminates. The reason for this is that the number of

different types of boundary increases rapidly with

number of deformation gradients in a texture, so

with two gradients there is only one type of boundary,

but with three there are three types and with four there

are six. Each type of boundary needs to be rank-one

connected, so the number of continuity relations that
must be satisfied also increases rapidly. Furthermore,

the different types of boundaries will not be parallel so

intersections between boundaries will need to be con-

sidered which have further continuity constraints (14).

However, one trick which has been used to construct

textures that involve more than two deformations in

both SmC (11) and nematic (9) elastomers is higher-

order lamination. This entails lamination between two

deformation gradients that are rank-one connected

and are themselves made relaxed by the formation of

laminates, making a second-order lamination between
two laminated deformations. This allows four defor-

mation gradients to make up the final texture while

only having three continuity equations (one for each

simple lamination and one for the second-order lami-

nation) and, by separation of length scales, being able

to neglect the intersections between the different lami-

nate interfaces.

8. Laminates in ideal nematic elastomers

8.1 Morphology of nematic stripe domains

The minimisers of (3) are any deformations with prin-

ciple values f1 ¼ f2 ¼ r�1=6 and f3 ¼ r1=3, meaning any

uniaxial stretch of magnitude r1=3. Figure 9 shows two

such stretches applied on either side of a plane bound-

ary. It is clear that only if the boundary bisects the axes
of the two stretches will it be stretched to the same

degree along the boundary by both deformations.

However, if the deformations are simple stretches

then, although the boundary will be stretched to the

same degree by both, it will be rotated differently and

the body will still fracture. For the deformations to be

rank-one continuous the stretches must be followed by

body rotations that restore the continuity of the
boundary. This simple construction shows that the

nematic director, which aligns with the long axis of

the stretch, must always form equal and opposite

angles with the boundary normal on either side of

the boundary, as was observed in the Kundler and

Finkelman experiment (Figure 1). This simple result

does not seem to have previously appeared in the

liquid crystal elastomer literature. The results of the
Kundler and Finkelman experiment can be neatly

explained by considering the successive states given

Figure 8. Two deformations that are rank-one compatible
differ only by a final state simple shear across the final state
boundary. The final state boundary normal is m¢.

Figure 9. Left: A body in the reference configuration is split
into two regions by a plane. Middle: Uniaxial stretches are
applied to the two regions. They are not compatible so the
sample rips along the boundary. The arrows indicate the axis
of the stretch, and consequently the nematic director. Right:
If the two regions are now rotated the boundary between
them becomes continuous again. Many repetitions of this
structure makes a stripe domain.
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by this construction as � moves from �=2 (the start of

the experiment) to 0 (the end of the experiment).

This construction can be put on a more rigorous

footing using two theorems originating in the study of

solids showing martensitic transitions. These theorems

are useful for establishing the morphology of textures.

The first states that if Q is a rotation matrix the
equation

F
1
�Q � F

2
¼ a # m ð14Þ

has, for fixed F
1

and F
2
, either two or zero solu-

tions, which in general will have different Q, a and

m (see (21)). The second, known as Mallard’s law,

states that if FT
1
� F

1
¼ R � FT

2
� F

2
� R for some �

rotation R there are certainly two solutions, one of

which has m along the axis of R (see (22)). There
are also simple forms for m for the second solution

and for a for both solutions. More details can be

found in (14). Taking F
1

and F
2

as two uniaxial

stretches that minimise (3) with axes n1 and n2 (so

F
1
¼ r�1=6ð� þ ð

ffiffi
r
p
� 1Þn1 # n1Þ and likewise for

F
2
) we see that Mallard’s law is satisfied if the

axis of R is taken as either n1 þ n2 or n1 � n2 so

that Rn2 ¼ �n1. This means there are certainly two
solutions to the continuity equation, one with

m / n1 � n2 and one with m / n1 þ n2. Therefore,

any two minimisers of (3) can, after an appropriate

body rotation, form a laminate texture, and that the

boundary normal of the stripe domain must always

bisect the nematic directors (which align with the

stretch axes) on either side of the boundary. The

first theorem then tells us that these are no more
solutions to (14) with minimisers of (3) so there are

no stripe domains between relaxed states that do

not have this property.

8.2 The full set of low-energy textured deformations

We can use the idea of laminate textures to find the

full set of deformations that can be achieved with
the same energy as a relaxed monodomain by the

formation of texture, Kqc. In the following section

we explicitly construct textures (double and single

laminates) that allow any deformation in the upper

bound on Kqc in (9) to be achieved with this energy

density. This is necessarily quite abstract, so less

mathematically inclined readers may prefer to skip

to Section 9 where the full relaxation result is stated
and discussed.

Let K1 be the set of deformations that can be made

soft by forming laminate textures between two mem-

bers of K0. This means that if a deformation F is in K1

the elastomer can realise this deformation by splitting

into a stack of layers with layer normal m and under-

going alternating soft deformations Fþ and F� (both

in K0). For this to work Fþ and F�must be compatible

(rank-one connected), meaning that for some a,

Fþ � F� ¼ a # m; ð15Þ

and the average deformation must be F, so, if the

volume fractions of Fþ and F� are � and 1� �,

respectively, �Fþ þ ð1� �ÞF� ¼ F. We can write

this more compactly as

K1 ¼ fF ¼ �Fþ þ ð1� �ÞF� : Fþ;F�

2 K0;Fþ � F� ¼ a # mg: ð16Þ

If F is in K1 and is made soft by lamination between Fþ

and F� with texture normal m, we know that, since

two of the principal values of Fþ are r�1=6, there is a

whole plane of unit vectors such that jFþêj ¼ r�1=6.

This plane must intersect with the plane perpendicular

to m with at least a line, let the vector v be a unit vector
on this common line. Dotting the continuity equation

(15) onto v we see that

Fþv ¼ F�v: ð17Þ

Therefore, Fv ¼ Fþv and jFvj ¼ r�1=6, so lamination

between two soft deformations must produce an over-
all deformation F with f1 ¼ r�1=6, so

K1 � fF 2M3·3 : r�1=6 ¼ f1; detðFÞ ¼ 1g: ð18Þ

Physically this simply means that in the direction per-

pendicular to both long stretches (into the page in

Figure 9) the total stretch must be r�1=6. We now

construct single laminates to show that all deforma-

tions with this property can be constructed by the

lamination of members of K0.

The polar decomposition theorem tells us that
any deformation can be fully characterised by three

simple stretches in three orthogonal directions (by

the three principal values of the deformation) fol-

lowed by a body rotation. The latter cannot change

the energy of the deformation, and since the reference

state is isotropic (see (7)), nor can the choice of direc-

tions to impose the three perpendicular stretches.

Therefore, we expect the energy of the deformation
to be only a function of the principal values of the

deformation.

According to (18) the most general set of principal

values that might be compatible with being in K1 are

f1 ¼ r�1=6, f2 ¼ �2 and f3 ¼ �3 where r�1=6 � �2 � �3

and �2�3r�1=6 ¼ 1 but �2 and �3 are otherwise
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unconstrained. The simplest deformation with these

principal values is the symmetric matrix with the prin-

cipal values as its eigenvalues. If F is this matrix, then

in some frame it is diagonal giving

F ¼ diagðr�1=6; �2; �3Þ. If we take

F� ¼
r�1=6 0 0

0 �2 ��
0 0 �3

0
@

1
A ð19Þ

we see that F ¼ 1
2

Fþ þ 1
2

F� and

Fþ � F� ¼ 2�e2 # e3; ð20Þ

so Fþ and F� are compatible and can form a lami-

nate structure that averages to F. Therefore, if Fþ

and F� are in K0 (are soft deformations), then F

can be made into a soft deformation by adopting
this texture, and is in K1. One principal value of

both Fþ and F� is r�1=6 (by construction), the other

two principal values are given by the square roots

of the solutions of

det

�2 ��

0 �3

0
@

1
A �2 ��

0 �3

0
@

1
A

T

�t

1 0

0 1

0
@

1
A

2
4

3
5 ¼ 0: ð21Þ

The solutions of this characteristic equation, which are

the same for both Fþ and F�, are given by

t ¼ 1

2
ð�2

2 þ �2
3 þ �2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð�2

2 þ �2
3 þ �

2Þ2 � �2
2�

2
3

r
: ð22Þ

This solution explains the placement of � in (19): we

can now tune its value to adjust the principal values

of F� to ensure they are in K0. It could not have

been placed in either the top row or left-hand col-

umn without disrupting the smallest principal value,

which we need to be r�1=6, but it could equivalently

have been placed in the diagonally opposite slot.
For Fþ and F� to be soft deformations, their prin-

ciple values must be r�1=6, r�1=6 and r1=3, so the

solutions of this equation must be r�1=3 and r2=3.

These values for the solutions are obtained by

taking

� ¼ 1

r1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=3 � �2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=3 � �2

3

q
: ð23Þ

Furthermore, we see that our existing conditions on �2

and �3 (r�1=6 � �2 � �3, �2�3r�1=6 ¼ 1) ensure that

these square roots are always real, so for any �2 and

�3 consistent with detðFÞ ¼ 1 and the smallest princi-

ple value of F being r�1=6 we can find a � such that Fþ

and F� are both soft deformations that can form a

laminate structure averaging to F. Therefore, we have

shown that every element in the set given in (18) is in K1,

so this upper bound on the set is in fact the exact result,

K1 ¼ fF 2M3·3 : r�1=6 ¼ f1; detðFÞ ¼ 1g: ð24Þ

The physical description of these single laminates is

straightforward: they are just a general presentation of

the ‘stripe domains’ that have already been predicted

(7) and observed (8). They are simply stripes of alter-

nating shear and director rotation with the directors

and plane normal all being in a common plane, as
sketched in Figure 4. All of the textures that have

been constructed here have equal volume fractions of

two deformations in K0. Clearly laminate structures

with different volume fractions can be made, but this

cannot include any more deformations in K1 only

provide alternate laminate textures for deformations

that are already in K1.

8.2.1 Second-order laminates

We have found the set of all deformations that can

be made soft by simple laminate textures, K1, but

this is somewhat smaller than the upper bound for

the full set of soft deformations given in (9). This

suggests we should look at laminates within lami-

nates, meaning laminates formed by alternating

layers each of which have undergone a deformation

in K1 that is itself soft by virtue of lamination. Let
the set of all soft deformations that require second

rank lamination be called K2,

fK2 ¼fF ¼ �Fþ þ ð1� �ÞF� : Fþ;F�

2 K1;Fþ � F� ¼ a # mg: ð25Þ

As in the single laminate case, we expect membership
of K2 to only depend on a deformations principle

values. Taking the simplest possible matrix with prin-

cipal values �1 � �2 � �3 (where �1�2�3 ¼ 1),

F ¼ diagð�1; �2; �3Þ, we see that

F� ¼
�1 0 ��
0 �2 0
0 0 �3

0
@

1
A ð26Þ

are again compatible deformations that average to F,

so if we can find a � such that F� are in K1, F is indeed
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in K2. One principal value of F� is clearly �2, the other

two are given by the square roots of the solutions to

the equation

det

�1 ��

0 �3

0
@

1
A �1 ��

0 �3

0
@

1
A

T

�t

1 0

0 1

0
@

1
A

2
4

3
5 ¼ 0: ð27Þ

which is familiar from the previous section. Its solu-

tions are

t ¼ 1

2
ð�2

1 þ �2
3 þ �2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð�2

1 þ �2
3 þ �

2Þ2 � �2
1�

2
3

r
: ð28Þ

For F� to be in K1, we require that their smallest
principle value be r�1=6, so the smaller root of this

equation must be r�1=3. This is true if we choose

� ¼ r1=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 � r�1=3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 � r�1=3

q
: ð29Þ

Since, by definition, �1 � �2 � �3 this choice of � is

real provided that �1 � r�1=6. Clearly any F with

r�1=6 � �1 � �3 � r1=3 satisfies this condition, more-
over, since the requirement detðFÞ ¼ 1 implies

�1�2�3 ¼ 1, we cannot find any F with r�1=6 � �1

but �3 � r1=3. The principle values of F are simply

�1, �2 and �3 so we see that

K2 	 fF 2M3·3 : r�1=6 � f1 � f3 � r1=3g: ð30Þ

However, this is precisely the same set as the upper

bound on Kqc given in (9). Since Kqc is the set of all

deformations that can be made soft by adopting

microstructure, it must be bigger than or equal to K2.
Therefore, the only possibility is that both sets and the

bound are all equal, that is

K2 ¼ Kqc ¼ fF 2M3·3 : r�1=6 � f1 � f3 � r1=3g: ð31Þ

From this we conclude that the set of all fully relaxed

deformations can be made relaxed by first- or second-
order lamination, so there is no need to consider

higher-order laminates.

The physical interpretation of double laminates is

a little harder than the single laminates. They can be

thought of as the result of taking a single laminate

structure and trying to stretch it perpendicular to the

laminate normal and the liquid crystal directors

(which are all in a plane). Deformations of this type
clearly have the potential to be soft because the direc-

tor starts perpendicular to the stretch direction so it

can rotate towards it. However, as the director rotates,

as well as stretching the sample in the required direc-

tion, shear also builds up. It is this shear that is elimi-

nated by the second-order lamination, which is

between regions of opposite director rotation and

opposite shear.

8.3 Laminates that cost energy

By inspecting Kqc we see that if a deformation F is not

soft, it must have its smallest principal value f1<r�1=6

(despite det F ¼ 1 this does not require f3>r1=3, for

example f1 ¼ r�2=3, f2 ¼ f3 ¼ r1=3 is not in Kqc). This

means that if it is built out of a texture, at least some of

the deformations that make up the texture must also

have smallest principal values less than r�1=6. The
energy of a monodomain that has deformed without

texture is

W ¼ f 2
1 þ

1

f 2
1 f 2

3

þ f 2
3

r
: ð32Þ

If we fix f1 and minimise over f3 we see that the lowest-

energy deformation consistent with this choice of f1 is

given by

f3 ¼
r1=4ffiffiffiffi

f1

p ; ð33Þ

which implies

f2 ¼
1

f1f3
¼ 1

r1=4
ffiffiffiffi
f1

p : ð34Þ

This is a highly anisotropic deformation with

f3=f2 ¼
ffiffi
r
p
; which is that same high anisotropy as

deformations in K0. If we apply a deformation with

this f1 that is more anisotropic in f2 and f3 there is no

scope for using textures to lower the energy, so the

sample will just deform as a monodomain with the

energy given by (32). Let the set of such deformations

be S, where

S ¼ F 2M3·3 :
f3

f2
�

ffiffi
r
p
; det F ¼ 1

� �
: ð35Þ

This leaves the set

I ¼ F 2 M3·3 :
f3

f2
<
ffiffi
r
p
; f1<

1

r1=6
det F ¼ 1

� �
ð36Þ

unaccounted for. These are deformations with f2 and f3
less anisotropic than is energetically desirable, so they

can lower their energy by splitting into textures where

each region is made out of more anisotropic (and
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hence lower energy) deformations. This sounds like it

could become very complicated, but in fact the result is

fairly simple: if you fix f1, any deformation with

f3=f2<
ffiffi
r
p

can be achieved by a single laminate struc-

ture built out of deformations which have the same

value for f1 but with the optimal values for f2 and f3,

namely f3=f2 ¼
ffiffi
r
p

. Such a structure has energy

W ¼ f 2
1 þ

1

f 2
1 f 2

3

þ f 2
3

r
ð37Þ

¼ 2ffiffi
r
p

f1

þ f 2
1 : ð38Þ

Showing that this optimal energy can be achieved

could be done straightforwardly by again using the

constructions in the preceding sections to find the

laminates that can form between domains with fixed

f1 and f3=f2 <
ffiffi
r
p

. However, it is more instructive to

consider these deformations as derived from com-

pressions of K1. Deformations in K1 also have
f3=f2 <

ffiffi
r
p

because this is enforced by the condition

f1 ¼ r�1=6. Therefore, every deformation in I can be

thought of as a deformation in K1 with principal

values f1 ¼ r�1=6, f2 and f3 that has been followed by

a uniaxial compression along the direction of f1 by

� to give a new deformation with principal values

r�1=6=�,
ffiffiffi
�
p

f2 and
ffiffiffi
�
p

f3. Any deformation in I can

be constructed in this way. However, the deforma-
tions in K1 were constructed out of laminates of

deformations with principle values r�1=6, r�1=6 and

r1=3, so when we compress the structure to obtain

the deformation in I it is still a laminate structure

but built out of deformations with principle values

r�1=6=�,
ffiffiffi
�
p

r�1=6 and
ffiffiffi
�
p

r1=3. These still have

f3=f2 ¼
ffiffi
r
p

so they are precisely the optimal laminate

structures that were claimed to exist in the previous
paragraph.

9. Relaxed energy functions

We are now in a position to write out the full relaxed

energy function for ideal nematic elastomers,

W qcðFÞ ¼
3r�1=3 if F 2 Kqc

2=ðr1=2f1Þ þ f 2
1 ifF 2 I

f 2
1 þ f 2

2 þ f 2
3 =r ifF 2 S

1 otherwise

8>><
>>:

ð39Þ

where

I ¼ F 2M3·3 : f3
f2

<
ffiffi
r
p
; f1< 1

r1=6 ; det F ¼ 1
n o

S ¼ F 2M3·3 : f3
f2
�

ffiffi
r
p
; det F ¼ 1

n o
Kqc ¼ fF 2M3·3 : r�1=6 � f1 � f3 � r1=3; det F ¼ 1g:

The ‘otherwise’ case only contains deformations with

det F�1 that do not conserve volume.

However, whilst the arguments in the preceding

sections demonstrate that textures exist that allow

the elastomer to relax to this energy, the arguments

that this is the furthest it can relax have not been at all

rigorous. This poses a general question: how do we

know when an energy function is relaxed and no
longer susceptible to the formation of further textures?

When a material is deformed, it will respond with a

textured deformation if there is a texture of deforma-

tions such that the average of the energy of the defor-

mations is lower than the energy of the average of the

deformations. This suggests the underlying cause of

the formation of textures is a lack of convexity in the

energy function. This suggestion is backed up by the
plots of the energy functions for nematic and conven-

tional elastomers (Figure 6) which show that the

nematic energy is much less convex than the conven-

tional energy. Reassuringly, if we plot the same graph

for our relaxed nematic energy function it is now con-

vex (Figure 10).

In one dimension the lack of simple convexity is

indeed the cause of textured deformations. Consider
a long rod that is stretched (affinely) by a factor of �
at an energetic cost of Wð�Þ. It will be energetically

favourable for the rod to split into length

fractions f and ð1� f Þ which undergo stretches �1

and �2, respectively, if f�1 þ ð1� f Þ�2 ¼ �, so the

average stretch matches that imposed, and

fWð�1Þ þ ð1� f ÞWð�2Þ � Wð�Þ which is precisely the

condition that W be a non-convex function. If we plot
Wð�) and draw a straight line between Wð�1Þ and

Wð�2Þ, a point on the line a fraction f of the distance

between the two points gives the average energy and

stretch of a texture consisting of a fraction f of the

material undergoing �1 and a fraction ð1� f Þ of the

material undergoing �2. If the point lies above

–2

0

2

–2

0

2

0

0.7

W

Figure 10. Energetic cost of imposing a uniaxial stretch on a
nematic elastomer in the reference state after formation of
the optimal texture; compare with Figure 6. The flat disc at
the middle of the plot is a set of deformations made
completely relaxed by texture formation.
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the curve, the texture does not save energy, but if it

lies below it does. The relaxed energy function is thus

simply the convex envelope of Wð�Þ, meaning the

highest valued convex function that is nowhere larger

than Wð�Þ. An example of this construction is shown

in Figure 11. This can be constructed using the

‘common tangent’ construction where regions of
non- convexity are replaced by the straight line

which is tangent to the curve on both sides of the

region.

In higher dimensions the notion of convexity is not

as helpful in making progress because W is a function

of the deformation gradient F not the scalar stretch �.

The problem is that convexity is not compatible with

the principle of frame indifference, which states that
simply rotating the final state after deformation

should not cost any energy. Consider the deformation

gradients F1 ¼ diagð1; 1; 1Þ and F2 ¼ diagð1;�1;�1Þ.
The first is simply identity, which is to say it does not

deform at all, while the second is a � rotation about

some axis. The principle of frame indifference dictates

that both these deformations must cost the same

amount of energy since they are only different by a
final state body rotation. If WðFÞ was genuinely con-

vex then F
3
¼ 1

2
F

1
þ 1

2
F

2
¼ diagð1; 0; 0Þ would also

have to cost the same energy, despite the fact that it

has a determinant of zero and collapses a three-

dimensional solid body onto a line. This does not

matter because it is impossible to build a texture out

of F
1

and F
2

without ripping the body, so although the

energy function is not convex between F1 and F2 we
cannot build textures that exploit this lack of convex-

ity. However, if F
1

and F
2

had been rank-one con-

nected and hence able to form laminate textures, we

would be able to form textures that exploited the lack

of convexity. This means that relaxed energy functions

need to be rank-one convex (23), meaning that

W rðF þ �a # nÞ is a convex function of � for any F,

a and n.

A rank-one convex energy function is not suscep-

tible to the formation of laminate textures. However,

such a function may be subject to the formation of

other more exotic textures. The true defining feature

of a relaxed function is that it is quasiconvex, meaning

W qcðFÞ ¼ min
x¢¼Fx on �

1

Vol:�

Z
W qcð�x¢ðxÞÞdx; ð40Þ

which simply states that a function is quasiconvex if its

energy cannot be lowered by texture formation, so the

minimum over all possible textured deformations con-

sistent with imposing F on the boundary (right-hand

side) is simply the same as the energetic cost of impos-

ing F homogeneously throughout the body (left-hand

side). However, proving quasiconvexivity directly is
usually very difficult. In the case of ideal nematic

elastomers we can proceed using an important theo-

rem proved by Ball (24). We say that a scalar function

WpcðFÞ is polyconvex if there is a another function g

with two matrix arguments A and B and a scalar argu-

ment c such that gðA;B; cÞ is convex in A, B and c and

has the property that if you replace A with F, B with

F�T and c with det F you obtain WpcðFÞ. Ball’s theo-
rem says that a polyconvex function is quasiconvex

and, hence, fully relaxed and not susceptible to further

formation of texture (24), although the reverse is not

true, and the physical meaning of polyconvexity is

unknown.

To show that the proposed form (39) is polycon-

vex, we write it as a function of � ¼ 1=f1 and 	 ¼ f3
(using det F ¼ 1) and then differentiate each part of
the result,  ð�; 	Þ, twice to show that it is a contin-

uous, non-decreasing and convex function of both

variables. This is a tedious exercise so it is not repro-

duced here. We then write � ¼ maxê jAêj and

	 ¼ maxê jBêj. These are convex functions of A and

B, respectively, because the maximum of a sum is

always less than or equal to the sum of the maxima.

The function gðA;BÞ ¼  ðmaxê jAêj;maxê jBêjÞ is
therefore a convex function of A and B because a

convex non-decreasing function of a convex function

is always a convex function. Finally, since

gðF;F�TÞ ¼ WqcðFÞ, we conclude that Wqc is polycon-

vex and hence relaxed.

10. Physical interpretation of Wqc

The physical interpretation of Wqc is clouded by the

fact that it is written in terms of deformations from a

high-energy reference state whereas in practice one

normally thinks of deformations from a well-aligned

Figure 11. Left: A non-convex one-dimensional energy
function Wð�Þ, the dotted lines are tangent to points on the
curve on either side of the regions of non-convexity. Right:
Texture formation allows the energy function to relax to its
convex envelope, which falls on the common tangents
sketched on the left over intervals in which the original
function was non-convex.
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relaxed state. However, to reach the four different

regimes from an aligned state is straightforward.

If you stretch perpendicular to the director we enter

K1 and the elastomer forms zero-energy, planar single

laminates. This is the Kundler and Finkelmann geo-

metry (8). If you take such a sample already showing

laminates and stretch it in the third direction (i.e.per-
pendicular to the original director and the original

stretch) it enters K2 and forms zero-energy, double-

laminate textures. If instead of stretching a laminate

sample you compress it in this third direction it will

enter the I regime of energy-costing single laminates.

Finally if you take an aligned monodomain and

stretch it along its director you will enter S, the regime

of hard elasticity without texture or director rotation.
If the result for Wqc is taken literally, the elastomer

can be regarded as being liquid like when it is in Kqc

since, at the set’s interior, which is K2, all deformations

in the vicinity of the current deformation are soft so

the elastomer should be able to flow. In contrast, in the

S regime the elastomer is definitely behaving as a

conventional elastic solid, with greater deformations

costing more energy. In the I regime, behaviour is
intermediate since the deformations do cost energy

but the energy only depends on the smallest principal

value of the deformation. In the plane perpendicular

to this direction the elastomer is still behaving like a

fluid. However, these classifications neglect both the

semi-soft nature of real elastomers and the interfacial

energies of texture planes which, in particular, will

mean the zero-energy set of deformations is not actu-
ally zero energy, so the elastomer will not truly flow.

11. Length-scale of textures

In all of the above work, we have implicitly assumed

that the laminate textures are formed on an infinitely

small length scale. In practice, in the Kundler and

Finkelmann experiment the laminates formed with

widths between 1 and 100�m (Figure 2). This length

scale can be understood as the result of a competition

between the interfacial energy of the laminate bound-

aries and the energy cost to the material of not quite
meeting the imposed deformation at the boundary.

A full analysis of this competition can be found in

(8), here we simply give an overview of the source of

the interfacial energy.

To model the interfacial energy we need two new

physical ideas. The first is the Frank energy, familiar

from conventional liquid crystals, which is an energy

penalty for gradients (curves) in the nematic director.
Second, the energy function (7) was developed under

the assumption that the nematic director always aligns

with the axis of most stretch from the isotropic state.

This is certainly the conformation that minimises the

elastic energy, but in situations where there are other

processes that couple to the director (such as the

Frank energy) it is possible for the nematic director

to rotate away from this direction. The full model in

(17) (equation (4)) includes this possibility and pre-

dicts a large elastic cost for this type of director rota-

tion. At the boundary between laminates these two
ideas conflict because the nematic director must bend

sharply at the boundary. If the bend is very sharp it

carries a high Frank energy, but if it is not sharp there

is a large region in the middle of the boundary where

the nematic director is rotated away from its preferred

orientation. The competition between these two

effects determines both the width and the interfacial

cost of the boundary. A dimensional analysis suggests
(correctly) that the appropriate characteristic width isffiffiffiffiffiffiffiffiffi

K=�
p

, 10�8m, where K is the Frank coefficient (in

the one constant approximation) and � ¼ kbTn, where

n is the number density of cross-links, is the shear

modulus of the nematic elastomer. This is much less

than the characteristic stripe width of around 10�5 m,

so the picture of stripes of completely homogenous

deformations with very thin interfaces between them
is accurate.

12. The effect of non-ideality

In reality nematic elastomers are not ideal, rather the
nematic director has a slight preference to align in a

certain direction and deformations that cause the

director to rotate away from this preferred direction

are not truly soft but rather cost a little energy. We can

write down an expression for this non-ideal nematic

energy that incorporates this idea,

WðFÞ ¼ f 2
1 þ f 2

2 þ
f 2
3

r
� 	jFn0j2; ð41Þ

where n0 is the preferred direction. This energy was

originally derived microscopically in (25).

Unfortunately, the full relaxed form of this energy

has not been found, although it has been solved for

thin films in extension (10). From the perspective of
texture, the addition of non-ideality has two conse-

quences. First, it breaks the large degeneracy of the

ideal system: it assigns slightly different energies to

different textures that previously produced the same

macroscopic deformation at the same energy cost. For

example, all of the textures that have been explicitly

constructed in the ideal nematic case are laminates

involving equal volume fractions of two different
energy gradients; however, once two deformation gra-

dients have been found to be rank-one compatible,

and hence can laminate, they can do so with any

volume fraction, meaning that the laminate textures
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in K1 can, in fact, be realised in many different ways.

The construction shows that all deformations in K1

can be achieved by simple lamination of two soft

deformation gradients, and that no other deformation

gradients can be made soft in this way, but it does not

help to determine which lamination will take place.

Non-ideality breaks this degeneracy and helps deter-
mine which textures will actually occur. In particular,

one of the main results of (10) is that laminations

which have their layer normal along n0 (in the refer-

ence configuration) are preferred, and often will not

have equal volume fractions.

The second important consequence of non-ideality

is that deformations in the neighbourhood of the

relaxed (nematic and aligned) state do not texture
until they reach a (small) threshold magnitude. This

was observed in the original Kundler and Finkelmann

experiment and analysed in (8). The nature of the

onset of rotation has also been analysed in (26). This

second effect can be understood qualitatively as a

consequence of the energy now having a unique global

minimum at the relaxed state of the elastomer. Around

this minimum the form of the energy is the same as
that of a simple uniaxial solid, which is to say it is

locally convex enough to stop textures forming

between different deformations in the neighbourhood,

and there is no incentive to form textures with deforma-

tions that lie outside the neighbourhood because they

are far from the global minimum and hence higher in

energy. Textures only form for deformations that are

far enough away from the global minimum that there
are other deformations even further away that are

lower in energy.

13. Smectic elastomers

13.1 SmA elastomers

The underlying energy function for SmA elastomers

has two key differences from the nematic energy func-

tion. First, SmA liquid crystals are layered, and the

layers move affinely under deformation. Second, the

liquid crystal phase has a strong energetic preference
for remaining in the SmA state, so there is a large

energy penalty associated with causing the director

to deviate from the smectic layer normal or changing

the inter-layer spacing (27). This means that SmA

elastomers only have one relaxed state: the cross-

linking state which has both the preferred layer spa-

cing and the director aligned along the layer normal.

However, this energy function is still susceptible to the
formation of texture (27, 28). In this case the lack of

convexity underlying the texture formation is caused

by the large discrepancy between the high energetic

cost of deformations that change the layer spacing and

the much lower cost of those that do not. Figure 12

shows an example in which an average deformation of

stretch along the layer normal is constructed out of

two low-energy in-plane shears. This is completely

analogous to the ‘Helfrich–Hurault’ effect in liquid

SmA systems first described in (29).
The full form of the relaxed energy for a simplified

SmA-type energy function is presented in (28), the

proof proceeds in an analogous way to the analysis

of the ideal nematic system and depends on the con-

struction of double-laminate structures. Stretching

experiments have been conducted on SmA elastomers,

including along their layer normal (30, 31). In these

experiment the elastomer deformed affinely at small
stretches but with a complex texture at large stretches,

which is the behaviour predicted by the model in (28).

The instability to texture formation in this geometry

was first analysed in (27).

13.2 SmC elastomers

SmC elastomers can be modelled using exactly the
same energy as nematic elastomers but with the addi-

tional assumption that the smectic layers deform affi-

nely and additional energy penalties for deformations

that change the layer spacing or cause the director to

rotate away from its preferred angle with the layer

normal (32). In this approximation there is still a

large set of relaxed states associated with the director

occupying different directions in a cone around the
layer normal. This set of relaxed states is essentially

the subset of relaxed states for an ideal nematic elas-

tomer that are consistent with the extra SmC con-

straints. The full set of deformations made relaxed by

textures of relaxed states has been found (11) in a

manner analogous to the ideal nematic case reviewed

previously, although in this case not only double but

triple laminates were required to complete the
construction.

The description of simple laminates in SmC elas-

tomers is more subtle than in nematics because the

layers also form part of the morphology. Since the

relaxed states of SmC elastomers are simply a subset

Figure 12. Texture formation in a SmA elastomer. The
smectic layers are shown as dotted lines, and the director,
which is always perpendicular to the layers, is shown as a
double-headed arrow. By splitting into two regions that first
shear then body rotate the average deformation is a simple
stretch along the layer normal, but the inter-layer spacing
has not changed.
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of those of nematic elastomers the stripe domains all

have the same essential character as the nematic elas-

tomers (discussed in Section 8.1), namely that the

laminate boundary normal bisects the two directors.
However, in addition to this basic property, the types

of laminates that can form fall into two categories: one

in which the smectic layers pass through the texture

boundary apparently undeformed (33) and one in

which the smectic layers are bent at the laminate

boundary and the laminate boundary bisects the

layer planes on either side of it (34). A construction

illustrating these two basic types of boundary is shown
in Figure 13.

14. Conclusions and interesting experiments

The theoretical study of textures in liquid crystal

elastomers has made significant progress in the last

10 years. A very fruitful approach has been to start
with an underlying material energy function WðFÞ,
usually inspired by statistical mechanics, and then

prove that this relaxes by texture formation to a

lower energy function W rðFÞ. This is done by expli-

citly constructing laminate textures that allow the

relaxation to happen, then showing that W rðFÞ is a

quasiconvex function and hence there can be no

further relaxation. In some cases, notably ideal
nematic elastomers (9) and one model of SmA elas-

tomers (28), this procedure is complete, while for

other systems (ideal SmC and non-ideal nematic

elastomers) only part of the solution is known,

which is to say there are some deformations for

which relaxing textures are known to exist and

others for which there are no definitive conclusions.
This approach allows us to pinpoint deformations

that can be applied to elastomers which should lead

to texture formation. However, it is not very good

at predicting exactly which textures will occur

because the very high symmetry of the material

energy functions used means there are typically

many textures which allow a given deformation to

relax to its optimal energy. There is also no good
scheme for enumerating all textures that allow a

given deformation to relax to its optimal energy.

There are three ways of making concrete predic-

tions about which textures will form. The first is to

study their morphology (as in Section 8.1), which

allows us to predict that in all nematic and SmC

laminates between relaxed configurations the lami-

nate normal will bisect the two liquid crystal direc-
tors, as they do in the Kundler and Finkelmann

experiment. The second is to introduce non-ideality

(semi-softness) into the model which breaks much

of the degeneracy, but then the lower symmetry

makes finding the relaxed energy function very dif-

ficult, and to date has only been done for thin

nematics films in extension (10). The third approach

is simply to rule categories of textures out. This is
seen in the double-laminate case for ideal elastomers

where the full set of deformations that can be made

soft by single laminations is known, K1, and it is

smaller than the corresponding set for double

Figure 13. A construction analogous to Figure 5 but for SmC elastomers. As in the nematic case, the boundary normal must
bisect the liquid crystal director for the deformations to be compatible. The smectic layers are shown as dotted lines, importantly
the smectic layer normal may have a component out of the page although the boundary normal does not. The liquid crystal
directors must also form equal angles with the dotted lines so that both the directors form the same angle with the smectic layer
normal. For the elastomer to be in a relaxed state this must be the preferred tilt angle. These constraints permit two different
morphologies: the first, shown in the top, in which the smectic layers are bent at the boundary, and the second, shown below,
where they are not.
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lamination, K2 ¼ Kqc. This means that for deforma-

tions in K2 but not in K1 textures are expected and

single-laminate textures can be ruled out.

The lack of certainty over which textures will form

makes experimental results particularly interesting.

Not only will more observations test the theoretical

predictions, but the observation of more textures may

help the construction of a theory which makes clearer
predictions about which textures will be observed. To

this end, this review is concluded with a list of four

experimental geometries that are predicted to produce

interesting textured deformations.

14.1 Double laminates

The calculation of the full relaxed energy for ideal
nematic elastomers contains a large set of deforma-

tions which can be made completely relaxed by the

construction of double-laminate textures. These are

textures in which two simple laminations, each of

alternating stripes of two different deformation gra-

dients, are then themselves laminated. These tex-

tures require the emergence of two length scales,

the first lamination length scale between the indivi-
dual deformations, and then a second much longer

lamination length scale for the laminations between

laminations. They are predicted to occur for defor-

mations in which the elastomer is stretched in both

directions perpendicular to the original director.

This is a hard deformation to impose because the

elastomers are in practice always thin films, and

these deformations would require the thin film to
be stretched in its thin direction. One way to

achieve this would be to heat a nematic monodo-

main to the isotropic state, then cool it under the

constraint that it cannot change shape perhaps by

gluing it between glass slides of fixed separation.

This enforces the deformation F ¼ � which is a

deformation which can be made relaxed by the for-

mation of double laminates, but not by the forma-
tion of single laminates.

The exact nature of the theoretical prediction in

this case is not that double laminates will certainly

form, but simply that something interesting must

happen. The double-lamination construction proves

that there are low-energy textures that the elastomer

can adopt in this circumstance, and proves that they

are not single laminates. We therefore expect the
elastomer to adopt some texture which is approxi-

mately zero energy, which may or may not be dou-

ble laminates, but must certainly be a type of

texture that has not been observed before. Clarity

as to what textures are observed may well accelerate

and motivate further theoretical enquiry into this

interesting question.

14.2 Single laminates always initially perpendicular to n0

The work by Conti et al. (10) on non-ideal nematic

elastomers makes firmer predictions about which spe-

cific single-laminate structures will form than can be
done with ideal nematic elastomers because the semi-

softness breaks the large degeneracy of equal energy

single laminates in the ideal system. It is predicted that

the laminations that really occur will be those with

boundary normals (in the initial state) parallel to the

initial director. This leads to two new effects, first the

texture normal will in some circumstances rotate with

increased deformation, and second the stripe domains
with non-equal volume fractions will be observed. The

rotation of the laminate normals is simply caused by

the rotation of the plane that is initially perpendicular

to the initial director as a consequence of the macro-

scopic deformation.

One geometry in which both of these effects

could be seen is simply stretching an aligned mono-

domain sample at an angle to the initial director.
For texture to be observed the angle between the

stretch axis and the initial director must be more

than �=4 or the macroscopic deformation will

stretch the direction corresponding to the initial

director and no texture will be observed. The opti-

mal angle is around 3�=8 (� ¼ �=8 in Figure 14) so

that the geometry is neither too near the original

Kundler–Finkelman experiment nor unable to show
texture. The results in (10) predict that texture

should form with equal volume fractions and

boundary normals along the initial director, and

then as stretching increases the volume fraction of

the back-rotated species should reduce and that of

the forward rotated species should increase until, at

some critical stretch, only the latter remains and a

monodomain is returned and subsequent deforma-
tion is hard. This is shown in Figure 14. These

predictions are in contrast to those in (7) which

predicts a different texture with laminate normals

always perpendicular to the strain direction. This

Figure 14. Experiment to confirm the preference for
forming laminates with boundary normals perpendicular to
the initial director. A relaxed sample is prepared and
stretched at an angle � to the relaxed director. At small
stretches (but after a threshold) laminates appear with
equal volume fractions of both senses of rotation. As
stretching proceeds the volume fraction of back rotated
stripes declines to zero and the texture returns to being a
monodomain. The boundary planes rotate with increasing
stretch as though they are embedded in the sample.
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discrepancy is because, although the textures in (7)

are relaxed textures for ideal nematic elastomers,

they are not optimal for non-ideal specimens.

14.3 Novel lamination structures in SmC elastomers

Experimental geometries for observing texture in SmC
elastomers are discussed at length in (11) and (33). The

two most promising geometries are to shear a SmC

elastomer as shown in Figure 15(a) (33) and to stretch

at an angle to both the layer normal and director as

shown in Figure 15(b) (see (11)). Both of these experi-

ments have some technical difficulties, the shearing

experiment because shearing a thin film without

wrinkling is difficult, and the tensile experiment
because there is only predicted to be a small set of

axes (approximately �=4� � � 
 � �=4) that will

cause texture. A simpler experiment would be to

shear in a slab geometry but in this case although

textures have been predicted (also in (33)), they are

not truly soft.

One of the textures proposed in the shearing geo-

metry is particularly interesting. In (33), Warner and
Adams propose a lamination in which the smectic

layer plane does not change and the elastomer splits

into equal volume fractions in which the liquid crystal

director has rotated by equal amounts but in opposite

senses around the smectic layer normal. As shearing

proceeds the degree of rotation increases until both

species have rotated by � and a monodomain is

restored. If the layer normal is ð0; 0; 1Þ and the initial

relaxed director is ðsin �; 0; cos �Þ (so � is the relaxed

director tilt angle), then, after some shear causing the

director to rotate by � 
, the two rotated directors

will be ðsin � cos
;� sin � sin
; cos �Þ. Using the rule

that the laminate normals must bisect the directors,

this means the laminate normal must either be

ðsin � cos
; 0; cos �Þ or ð0; 1; 0Þ. The latter is unlikely
since it requires the lamination plane to be in the film.

However, the first possibility is both reasonable and

extremely interesting. It predicts that as shearing pro-

ceeds the laminates will rotate through the sample,

starting perpendicular to the initial director and fin-

ishing perpendicular to the final director. This raises

interesting questions about the motion of the laminate

planes through the elastomer. It also predicts rotation
of the director out of the plane of the film. Excitingly,

it seems likely that this texture will be the texture

favoured by the addition of semi-soft contributions

to the model since it has continuous director rotation

from the preferred direction and laminates initially

perpendicular to the initial director.

There remains much ambiguity in predicting expli-

cit textures in SmC elastomers, not least because there
has been no study of semi-soft SmC systems analogous

to (10), however these systems promise a rich set of

textured responses. Work in this area is further moti-

vated by the existence of chiral SmC* elastomers

which show electrical polarisation along the cross pro-

duct of the layer normal and liquid crystal director,

making SmC* elastomers ferro-electric rubbers. This

adds extra interest to the study of textured deforma-
tions since, if the polarisation vector cuts the laminate

normals, they may become charged.

References

(1) de Gennes, P.G.; Prost, J. The Physics of Liquid
Crystals, second edition; Oxford University Press:
New York, 1995.

(2) de Gennes, P.G. Scaling Concepts in Polymer Physics;
Cornell University Press: New York, 1980.

(3) de Gennes, P.G. Phys. Lett. A 1969, 28, 725.
(4) de Gennes, P.G. C. R. Acad. Sci. B 1975, 281, 101.
(5) Kundler, I.; Finkelmann, H. Macromol. Chem. Rapid

Comm. 1995, 16, 679.
(6) Zubarev, E.; Kuptsov, S.; Yuranova, T.; Talroze, R.;

Finkelmann, H. Liquid Crystals 1999, 26 (10), 1531–1540.
(7) Verwey, G.C.; Warner, M.; Terentjev, E.M. J. Phys. II

France 1996, 6, 1273–1290.
(8) Finkelmann, H.; Kundler, I.; Terentjev, E.M.; et al. J.

Phys. II 1997, 7, 1059.
(9) DeSimone, A.; Dolzmann, G. Arch. Rational Mech.

Anal. 2002, 161, 181.
(10) Conti, S.; DeSimone, A.; Dolzmann, G. Phys. Rev. E

2002, 66, 061710.
(11) Adams, J.M.; Conti, S.; DeSimone, A. J. Cont. Mech.

Ther. 2006, 18, 319–334.

Figure 15. Experiments to induce textured deformations in
SmC elastomers. The smectic layers are shown as dotted
lines and the liquid crystal director as a double-headed
arrow making an angle � with the layer normal. Left:
Shearing the elastomer as proposed in (33). This geometry
should produce textures until the angle of the smectic
director has been reversed, although wrinkling may be a
problem. Right: Stretching the elastomer at an angle 
 to
the layer normal as discussed in (11). This stretch can be
achieved by cutting a rectangle out of a film as indicated then
stretching the new rectangular sample between clamps.
Texture will only be observed for a very restricted set of
choices of 
.
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